(1 группа) Синусы угла А ΔАВС сенс синусы в сенс тачка D
а сенс ячейка кружка в сенс тачка E. Доказати дая: BЕ = АE : DЕ.
(2 группа) Вычисли седан укокры ΔАВС са врхом С сенс синусу кружка у тачка E. Доказати дая: BС = CЕ.
(2) У праобтаку ΔАВС: a, b - катеты, c - гипотенуза, h - высота

1. Решите неизвестные:
 a = 130 см, b = 312 см
 b = 136 см, h = 120 см
 3. Решите уравнения:
 \[
 \frac{3x^2 - x - 20}{x^2 - x - 2} \leq 2
 \]
 \[
 \frac{3x^2 - 22x + 37}{x^2 - 6x + 8} > 2
 \]
 4. Решите системы задачи:
 3x - 5y + 2z = -5
 6x + 2y - 3z = 23
 4x - 3y - z = 3
 \[
 \text{или группы} - x - 2y + 7z = 9
 \]
 5. Решите уравнение:
 (1 группа) |2x - 3| - |x + 1| = 5x - 10
 (2 группа) |x + 2| + |x - 3| = 5 - 5x
(1) НА ОСНОВЕ ПОЛОЖЕНИЯ ОБ СУММА ЗУ: $\angle EBC = \angle EAC$ (АКСИОМА 1)

$\angle EBC = \angle EAC$ | PO УСЛОВИЯ СИММЕТРИИ

$\triangle EBC$ и $\triangle EAC$ | НА ОСНОВЕ ОПРЕДЕЛЕНИЯ

ОТСЮДА $\frac{BE}{BE} = \frac{BE}{AE}$ | $\angle BAC = \angle BAC$ (1)

$\angle EBC = \angle EAF$ | $\angle EBC = \angle EAF$

$\angle ABE = \angle EBO$ | $\angle ABE = \angle EBO$

$\triangle ABE$ | ИЗОТРИУСЧАТЫЙ

$\angle ABE \Rightarrow \triangle BEB$ | $\angle ABE \Rightarrow \triangle BEB$ (2)

$\frac{AE}{BE} = \frac{BE}{DE}$ | $\frac{AE}{BE} = \frac{BE}{DE}$

$\frac{AE}{BE} = \frac{BE}{DE}$ | $\frac{AE}{BE} = \frac{BE}{DE}$

(2) $a = 150$ см; $b = 136$ см;

$c = 120$ см;

d = 118 см;

$e = 2.5$ см;

$\angle A = 90^\circ$;

$\angle C = 30^\circ$;

$\angle D = 60^\circ$;

$\angle E = 120^\circ$;

$\angle B = 45^\circ$;

$\angle F = 135^\circ$;

$\angle G = 75^\circ$;

$\angle H = 105^\circ$;

$\angle I = 150^\circ$;

$\angle J = 60^\circ$;

$\angle K = 120^\circ$;

$\angle L = 90^\circ$;

$\angle M = 135^\circ$;

$\angle N = 105^\circ$;

$\angle O = 75^\circ$;

$\angle P = 45^\circ$;

$\angle Q = 30^\circ$;

$\angle R = 15^\circ$;

$\angle S = 12^\circ$;

$\angle T = 9^\circ$;

$\angle U = 6^\circ$;

$\angle V = 3^\circ$;

$\angle W = 1^\circ$;

$\angle X = 0^\circ$;

$\angle Y = 180^\circ$;

$\angle Z = 180^\circ$;

$\angle ABC = \angle DEF$ | $\angle ABC = \angle DEF$

$\angle ABE = \angle EBO$ | $\angle ABE = \angle EBO$

$\angle EBC = \angle EAF$ | $\angle EBC = \angle EAF$

$\triangle ABE$ | ИЗОТРИУСЧАТЫЙ

$\angle ABE \Rightarrow \triangle BEB$ | $\angle ABE \Rightarrow \triangle BEB$ (2)

$\frac{AE}{BE} = \frac{BE}{DE}$ | $\frac{AE}{BE} = \frac{BE}{DE}$

$\frac{AE}{BE} = \frac{BE}{DE}$ | $\frac{AE}{BE} = \frac{BE}{DE}$

(2) $a = 150$ см; $b = 136$ см;

$c = 120$ см;

d = 118 см;

$e = 2.5$ см;

$\angle A = 90^\circ$;

$\angle C = 30^\circ$;

$\angle D = 60^\circ$;

$\angle E = 120^\circ$;

$\angle B = 45^\circ$;

$\angle F = 135^\circ$;

$\angle G = 75^\circ$;

$\angle H = 105^\circ$;

$\angle I = 150^\circ$;

$\angle J = 60^\circ$;

$\angle K = 120^\circ$;

$\angle L = 90^\circ$;

$\angle M = 135^\circ$;

$\angle N = 105^\circ$;

$\angle O = 75^\circ$;

$\angle P = 45^\circ$;

$\angle Q = 30^\circ$;

$\angle R = 15^\circ$;

$\angle S = 12^\circ$;

$\angle T = 9^\circ$;

$\angle U = 6^\circ$;

$\angle V = 3^\circ$;

$\angle W = 1^\circ$;

$\angle X = 0^\circ$;

$\angle Y = 180^\circ$;

$\angle Z = 180^\circ$;

$\angle ABC = \angle DEF$ | $\angle ABC = \angle DEF$

$\angle ABE = \angle EBO$ | $\angle ABE = \angle EBO$

$\angle EBC = \angle EAF$ | $\angle EBC = \angle EAF$

$\triangle ABE$ | ИЗОТРИУСЧАТЫЙ

$\angle ABE \Rightarrow \triangle BEB$ | $\angle ABE \Rightarrow \triangle BEB$ (2)

$\frac{AE}{BE} = \frac{BE}{DE}$ | $\frac{AE}{BE} = \frac{BE}{DE}$

$\frac{AE}{BE} = \frac{BE}{DE}$ | $\frac{AE}{BE} = \frac{BE}{DE}$
(3) (1) \[\frac{3x^2 - 4x - 5}{x^2 - 2x - 3} \leq 2 \]

(11) \[\frac{3x^2 - 22x + 54}{x^2 - 6x + 8} \geq 2 \]

3x^2 - 4x - 5 - 2(x^2 - 2x - 3) \leq 0

3x^2 - 22x + 54 - 2(x^2 - 6x + 8) \geq 0

\[\frac{3x^2 - 4x - 5}{x^2 - 2x - 3} = 2 \]

\[\frac{3x^2 - 22x + 54}{x^2 - 6x + 8} = 2 \]

\[x = 0 \]

\[y = 0 \]

\[x = 0 \]

\[x = 2 \]

\[x \in [-4, -2) \cup [1, 4) \]

\[x \in (-\infty, 2) \cup [3, 4) \cup [7, \infty) \]

(5) (1) \[3x - 5y + 2z = -5 \]

(6x + 2y - 3z = 23)

(4x - 3y + 2z = 8)

\[y = -3 \]

\[z = 2 \]

\[x = -3y - z = 0 \]

\[y = \frac{11}{2} \]

\[x = 2 \]

\[(x, y, z) = (2, 1, -3) \]

(1) \[4x - 3y - z = 8 \]

\[11x - 11y = 11 \]

\[-6x + 11y = -11 \]

\[x = 2 \]
(1) \[\begin{align*}
&-x - 2y + 14z = 8, \\
&2x - 5y + 7z = 9, \\
&4x - 2y - 3z = 24
\end{align*}\]

\[\begin{align*}
&-x - 2y + 14z = 8, \\
&-y + 35z = 25, \\
&-10y + 55z = 56
\end{align*}\]

\[\begin{align*}
&x = -10, \\
&y = 5, \\
&z = 2
\end{align*}\]

(2) \[\begin{align*}
&-x - 2y + 14z = 8, \\
&-9y + 35z = 25, \\
&-10y + 55z = 56
\end{align*}\]

\[\begin{align*}
&x = 10, \\
&y = 5, \\
&z = 2
\end{align*}\]